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OBJECT 

The object of this investigation was to determine whether limited 
mechanical property data on adhesive bonds can be used for the es- 
timation of failure times for such bonds. 

SUMMARY 

Data are given for shear and tensile testing of adhesive bonds 
under a constant rate of loading.   A rate equation is then used to 
predict useful life from the mechanical data.   The correlations are 
in general quite satisfactory, providing that the failure is cohesive * 
within the adhesive. 

INTRODUCTION 

Applications of reaction rate theory to polymer mechanical be- 
havior have been carried out in a number of laboratories (Refs 1-4). 
We have successfully applied such methods to propellants (Ref 5), 
to various thermoplastics (Ref 6), and to glass-reinforced polymers 
(Ref 7).   An additional application of considerable interest to the 
Army is in the field of adhesive bonds.    This report describes the 
initial efforts at predicting the lifetimes of such bonds from limited 
mechanical property testing. 

RESULTS AND DISCUSSION 

The lifetime of a material subjected to mechanical restraint 
has been considered to be a process which proceeds according to 
a rate equation (Refs 1, 2).    By integrating the rate equation and 
making certain reasonable assumptions it is possible to obtain an 

In this work,  cohesive failure always refers to failure within the 
adhesive layer 



expression for constant rate of loading of the form (Ref 2): 

lntf-lnS   =   InBA   -   BS (1) 

A   =   YK
h    AF^/RT b    e 

XkT 

B   =   o-/2kT 

where tf is failure time, S is stress, yb is mean relative displace- 
ment, h is Planck's constant,     \ is jump distance,   AF^ is free ener- 
gy of activation, R is gas constant, T is the absolute temperature, 
<r is displacement volume, and k is Boltzmann's constant. 

Putting A and B in (1), taking AF^   =   AH^    -   TAS^ we may write 

lo\-T-)' c +itiT- b(s/T» <2> 

where C and b are constants. 

At constant temperature, the experimental data should give a 
straight line on plotting log (tf/S) versus S/T according to 

log  j-    =   D   -   b(S/T). (3) 

The apparent activation energy may then be evaluated by extra- 
polating several constant temperature lines to the vertical intercept 
(S/T   =   O)   and making an Arrhenius type plot in accordance with 

V2> 
logV-V-y=   C +AH/       . (4) 

2.3RT 

In a study of this sort, it appeared to be desirable to establish 
the feasibility of the approach by using available data.    Then, if the 
method appears to be useful, an experimental program can be set up. 
The data selected for analysis in this initial study had been collected 
in these laboratories several years ago.   The samples, designated 



I, II, III, and IV, may be briefly identified as follows: 

I. Nylon epoxy   -   Narmco 406 (temperature rise 10-12.5   /min). 
Reclaimed steel adherends. 

II. NOL specimen (Ref 7a) Narmco 406 (temperature rise 
10-12.5   /min).    Reclaimed steel adherends. 

III. Narmco 406 nylon epoxy lap shear (13.5 F/min cure).    Re- 
claimed steel adherends. 

IV. FM 97 lap shear.    Reclaimed steel adherends. 

Details of the experiments are given in the Experimental Pro- 
cedure section of this report.   The data are given in Tables 1-4. 

Since isothermal data were lacking for all of the samples (I-IV), 
Equation 3 could not be used in evaluation of parameters.    In a simi- 
lar case, propellant data were correlated by making a plot of log 
tfT   +  b(S/T) versus 1/T and using trial values of b to find the case 
where the plot is linear (Refs 5, 8).    Since such a method is quite 
tedious and laborious, it seemed desirable to develop an    alterna- 
tive procedure. 

If we multiply Equation 2 through by T, we get 

.2^ t 

- CT • i%r - bs- l5> 
At a data point T   , t     and S 

1 

Ti^\~1s^~J- CTi +fw - bSl <6) 

and similarly at data point T   , t     and S 
2     *2 



*£ T22 

Assuming the constancy of AH^, 

ft    T   2 \ /t    T   2 

fS| . T, taAi-LjT, + bS, = T2 lotiL l CT2 + bS2.     (8) 

Hence, 

Ti 1OMT~' T210%t~y" c<Tl"T2'" blS2"Sl> = °     (9) 

and, on dividing through by T   -T   , 

(10) 

For every possible plan of data points, the left hand side of 
Equation 10 may be plotted against (S2 - Sj)/(T1   - T2 ).   C and b 
are then evaluated from the intercept and slope, respectively.    After 
C and b are determined, we may go back to Equation 2 in the form, 

•°VV c + b(s/T» • T^T • (2a> 

The left-hand side of Equation la is plotted against 1/T to evalu- 
ate AH£ 



All possible pairs of points were taken for Sample I and are 
plotted according to Equation 10 in Figure 1.    Obviously, the plot is 
not satisfactorily linear.   The same sort of behavior was observed 
for Samples II and III.   Examination of the data indicated that the mode 
of failure is cohesive at the lower temperatures but becomes largely 
adhesive at the highest temperatures.    It seemed reasonable to pos- 
tulate that the one set of parameters could not describe both the co- 
hesive and adhesive failures.   Hence, the data at 344 K and 366 K 
were omitted for Samples I, II, and III.   The appropriate plots for 
cohesive failure are shown in Figure 2.    Considering the usual adhe- 
sive data scatter, these plots appear to be satisfactorily linear. 

Figure 3 shows the Arrhenius type plots drawn according to 
Equation 2a.    From the slope of the plots, AH^was evaluated in each 
case.   These values were surprisingly low, falling in the range of 
1 kcal/mole (see Equations 11 through 14 below). 

After the appropriate parameters were evaluated as discussed 
above, the values obtained were put back into Equation 2 to give the 
relationships between failure time, stress, and temperature in each 
case.   The equations are: 

Sample I 

log t    = log S - 2 log T +4.28 - 195/T - 0.00086 (S/T) (11) 

Sample II 

log t    = log S - 2 log T + 4.29 - 213/T - 0.00022 (S/T) (12) 

Sample III 

log t   = log S - 2 log T + 4. 20 - 155/T - 0.00467 S/T (13) 

Sample rV 

log tf  = log S - 2 log T +4.51  - 241/T  - 0.00422 S/T (14) 



As a further check on the validity of the treatment, Equations 11 
through 14 were used to calculate log t   at the temperatures and 
stresses at which the experimental values had been recorded.   Table 5 
shows the results.    It is noteworthy that in every case the agreement 
is good. 

EXPERIMENTAL PROCEDURES 

Shear Specimens (Samples I, III, IV) 

Materials 

Reclaimed 1020 steel coupons,  1 inch wide by 4 inches long by 
1 /8 inch thick, were used to prepare specimens with 1 /Z inch overlap. 

Metlbond 406, an unsupported nylon-epoxy adhesive tape, was used 
to bond the Sample I and III specimens. 

FM 97, a modified epoxy adhesive supported on a light glass fabric, 
was used to bond the Sample IV group. 

Adherend Preparation 

The steel coupons were immersed in toluene and washed with a 
cloth to remove preservative oils.   They were then washed in acetone 
to remove any remaining contamination; vapor degreased in the hot 
vapors of stabilized perchloroethylene; cooled to room temperature 
in a dessicator charged with silica gel; and stored in the dessicator 
until used. 

Specimen Preparation 

Individual coupons were marked with a scribe to establish the 
1 /Z inch overlap.   An aluminum jig was used to maintain alignment 
during the cure of the adhesive.    The jig was made of 1 /Z inch alum- 
inum plate with 1/8 inch brass pins press-fitted into holes drilled and 
geometrically arranged  to provide for accurate alignment of the speci- 
mens.    Four pins on each side and one pin at each end restricted the 
coupons during the curing operation.   Unused coupons were placed 
under the overlapped portion of the specimen to provide support and 
alignment.   A single layer of the adhesive being tested was used in the 



joint.   The assembly was placed in a hydraulic press and sufficient 
pressure was applied to assure 25 psi in each of the adhesive joints. 
The platens of the press were electrically heated.   Two different 
heating rates were achieved by either using or omitting pressure dis- 
tribution pads between the platens and the specimen assembly.   Re- 
silient long-fiber asbestos pads were used to achieve the 10    - 12.5   / 
min heating rate.   The faster heating rate of 13.5   /min was obtained 
without asbestos pads.    In each case, cure was started with cold pla- 
tens; and the temperature of 350  F was held for one hour after the 
bond line reached this temperature.   The temperature was monitored 
with thermocouples in the joint area of the assembly.    Calibration of 
the press and assembly for temperature rise and control preceded 
their use for this investigation. 

Tensile Specimens (Sample II) 

Materials 

Reclaimed 1020 steel tensile pieces,   1 /Z inch in diameter by 
2 inches long were bonded end-to-end to form the NOL tensile speci- 
mens. 

The Metlbond 406 described above was the adhesive used. 

Adherend Preparation 

The steel rod adherends were prepared similarly to the shear 
coupons described above. 

Specimen Preparation 

The NOL tensile specimens were prepared in a jig wherein the 
individual rods were butted end-to-end and rigidly constrained.    A. 
single wafer of the adhesive film was placed between the surfaces, 
and a five-pound lead weight was suspended on the top rod section to 
provide the required 25 psi cure pressure.    The entire assembly was 
heated to cure temperature in an air-circulating oven. 

Testing 

The static testing was conducted using a 60, 000-pound Baldwin 
test machine.   The load was 1, 300    pounds/in   . /min for both tensile 
and shear tests. 
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TABLE 1 

Mechanical property data for Sample I 

Test Shear Strength, psi 
Temperature Individual 

°K Values 
Average 

200 6380 
6800 
7200 
7000 7090 
6800 
8160 
7270 

219 6220 
5800 
7440 
6250 6580 
7250 
6540 
6570 

250 7340 
7400 7385 
7420 
7380 

283 5280 
5720 5400 
5200 

296 3200 
3320 
3240 
3180 3370 
3380 
3500 
3780 

344 1640 
1620 
1580 1610 
1620 
1580 

366 1250 

Failure Time ( f), min 
Individual 

Values 

4.91 
5.23 
5.54 
5.38 
5.23 
6.28 
5.59 
4.78 
4.46 
5.72 
4.81 
5.58 
5.03 
5.05 
5.64 
5.69 
5.71 
5.68 
4.06 
4.40 
4.00 
2.46 
2.55 
2.49 
2.45 
2.60 
2.69 
2.91 
1.26 
1.25 
1.22 
1.25 
1.22 
1.96 

Average 

5.45 

5.06 

5.68 

4.15 

2.59 

1.24 

10 



Test Shear Strt 
Temperature Individual 

°K Values 

1350 
1350 
1280 
1370 
1380 
1330 

TABLE 1 (cont'd) 

lgth, psi Failure Time ( f), min 
A Individual 
Average „„,,,_ Average 

Individual 
Values 

1. 04 

1. ,04 
0. ,98 
1. ,05 
1. 06 
1. 02 

1330 0.98 1.02 

11 



TABLE 2 

Mechanical property data for Sample II 

Test Shear Strength, psi Failure 1 
Temperature Individual 

Values 
Average 

Individua 
Values 

200 7700 5.92 
10,100 8.53 
11,220 8.63 

7090 9300 5.44 
10,910 8.39 

7 340 5.65 
10,760 8.28 

219 9970 7.67 
8670 6.67 
9490 8590 7.29 
7420 5.71 
8110 6.23 
7880 6.06 

250 15,910 12.24 
15,350 15,520 11.84 
15,300 11.77 

283 11,530 8.86 
12,390 12,290 9.53 
12,950 9.96 

296 6680 5.23 
8110 6.24 
8260 6.35 
7550 7520 5.81 
6680 5.14 
7850 6.04 

344 3260 2.51 
3825 2.94 
3900 3660 3.00 
2960 2.28 
4335 3.33 

366 2960 2.28 
2750 2. 12 
2680 2.06 

Average 

7.26 

6.61 

11.95 

9.45 

5.78 

2.81 

12 



TABLE 2 (cont'd) 

t 
Test Shear Strength, psi Failure Time ( f), min 

Temperature   Individual       . Individual o o_5 T7 , Average „ . Average K Values & Values & 

2960 2850 2.28 2.19 
2550 1.96 
3190 2.45 

13 



TABLE 3 

Mechanical property data for Sample III 

Failure time( f), min 
Individual      Average 

Values 

5.84 
6.15 
5.91 5.97 
5.92 
6.02 
5.46 
5.29 
5.91 5.63 
5.63 
5.88 
5.26 
5.54 
5.74 5.47 
5.11 
5.71 
4.37 
4.44 
4.31 4.42 
4.39 
4.61 
4.00 
3.77 
4.03 3.95 
4.06 
3.91 
2. 12 
1.98 
2.12 2.06 
1.95 
2.15 
1.15 
0.98 
1.32 1.13 
1.08 
1. 11 

Test Shear Strength, psi 
Temperature Individual Average 

Values 

200 7600 
8000 
7680 7760 
7700 
7840 

219 7100 
6880 
7680 7320 
7320 
7640 

250 6840 
7200 
7460 7110 
6640 
7420 

283 5680 
5780 
5600 57 50 
5710 
6000 

296 5200 
4900 
5240 5140 
5280 
5080 

344 2760 
2580 
2760 2690 
2540 
2800 

366 1500 
1280 
1720 1470 
1400 
1440 

14 



TABLE 4 

Mechanical property data for Sample IV 

Test Average Average 
Temperature Shear Strength, Failure Time ( f), 

°K psi min 

219 3440 2.65 
296 4400 3.31 
344 4740 3.65 
355 3650 2.86 

Average of 5 samples in each case 

15 



TABLE 5 

Calculated and experimental t„ values 

o Log tf, sec 
T,   K S, psi Calculated ExDerimental 

200 

219 6580 2.50 2.48 
250 
283 

296 3370 2.20 2.19 

200 9300 2.58 2.64 
219 8590 2.56 2.60 
250 15,520 2.82 2.86 
283 
296 

200 
219 

296 

219 
296 
344 

Sample I 
7090 2.52 
6580 2.50 
7385 2.54 
5400 2.40 
3370 2.20 

Sample II 
9300 2.58 
8590 2.56 

15,520 2.82 
12,290 2.72 

7520 2.50 

Sample III 
7760 2.55 
7320 2.52 
7110 2.50 
5750 2.41 
5140 2.37 

Sample IV 
3440 2.16 
4400 2.30 
4740 2.32 
3650 2.22 

2.52 

2.53 
2.40 

2.75 
2.54 

2.55 
2.53 

250 7110 2.50 2.52 
283 5750 2.41 2.42 

2.38 

2.20 
2.30 
2.34 

355 3650 2.22 2.24 

16 
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